297 research outputs found

    Non local parity transformations and anomalies

    Get PDF
    We present an alternative derivation of the parity anomaly for a massless Dirac field in 2+1 dimensions coupled to a gauge field. The anomaly functional, a Chern-Simons action for the gauge field, is obtained from the non-trivial Jacobian corresponding to a non local symmetry of the Pauli-Villars regularized action. That Jacobian is well-defined, finite, and yields the standard Chern-Simons term when the cutoff tends to infinity.Comment: 10 pages, Latex fil

    Precision Calculations for Associated WH and ZH Production at Hadron Colliders

    Full text link
    Recently the next-to-next-to-leading order QCD corrections and the electroweak O(alpha) corrections to the Higgs-strahlung processes ppbar/pp -> WH/ZH + X have been calculated. Both types of corrections are of the order of 5-10%. In this article the various corrections are briefly discussed and combined into state-of-the-art predictions for the cross sections. The theoretical uncertainties from renormalization/factorization scales and from the parton distribution functions are discussed.Comment: 8 pages, Contributed to 3rd Les Houches Workshop: Physics at TeV Collider

    Gluon-induced WW background to Higgs boson searches at the LHC

    Get PDF
    Vector-boson pair production is an important background for Higgs boson and new physics searches at the Large Hadron Collider LHC. We have calculated the loop-induced gluon-fusion process gg -> WW -> leptons, allowing for arbitrary invariant masses of the intermediate W bosons. This process contributes at O(alpha_s^2) relative to quark-antiquark annihilation, but its importance is enhanced by the large gluon flux at the LHC and by experimental cuts employed in Higgs boson searches. We find that gg -> WW provides only a moderate correction (ca. 5%) to the inclusive W-pair production cross section at the LHC. However, after taking into account realistic experimental cuts, the gluon-fusion process becomes significant and increases the theoretical WW background estimate for Higgs searches in the pp -> H -> WW -> leptons channel by approximately 30%

    Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC

    Full text link
    The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark--antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy-Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5-10% for a Higgs-boson mass up to \sim 700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.Comment: 33 pages, LaTeX, 24 postscript figure

    CPsuperH2.3: an Updated Tool for Phenomenology in the MSSM with Explicit CP Violation

    Full text link
    We describe the Fortran code CPsuperH2.3, which incorporates the following updates compared with its predecessor CPsuperH2.0. It implements improved calculations of the Higgs-boson masses and mixing including stau contributions and finite threshold effects on the tau-lepton Yukawa coupling. It incorporates the LEP limits on the processes e^+ e^- to H_i Z, H_i H_j and the CMS limits on H_i to tau^+ tau^- obtained from 4.6/fb of data at a centre-of-mass energy of 7 TeV. It also includes the decay mode H_i to Z gamma and the Schiff-moment contributions to the electric dipole moments of Mercury and Radium225, with several calculational options for the case of Mercury. These additions make CPsuperH2.3 a suitable tool for analyzing possible CP-violating effects in the MSSM in the era of the LHC and a new generation of EDM experimentsComment: 31 pages, 10 eps figures, 7 tables; H to Z gamma and SM BRs included; To appear in CPC; Typos in Eq.(A.2) corrected;The program may be obtained from http://www.hep.man.ac.uk/u/jslee/CPsuperH.html, or by contacting the first author at [email protected]; A comment added after Eq.(15) and a typo in Eq.(A.4) correcte

    Electroweak corrections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK

    Full text link
    The associate production of Higgs bosons with W or Z bosons, known as Higgs-strahlung, is an important search channel for Higgs bosons at the hadron colliders Tevatron and LHC for low Higgs-boson masses. We refine a previous calculation of next-to-leading-order electroweak corrections (and recalculate the QCD corrections) upon including the leptonic decay of the W/Z bosons, thereby keeping the fully differential information of the 2-lepton + Higgs final state. The gauge invariance of the W/Z-resonance treatment is ensured by the use of the complex-mass scheme. The electroweak corrections, which are at the level of -(5-10)% for total cross sections, further increase in size with increasing transverse momenta p_T in differential cross sections. For instance, for p_T,H >~ 200GeV, which is the interesting range at the LHC, the electroweak corrections to WH production reach about -14% for M_H = 120GeV. The described corrections are implemented in the HAWK Monte Carlo program, which was initially designed for the vector-boson-fusion channel, and are discussed for various distributions in the production channels pp / p \bar p -> H + l nu_l / l^-l^+ / nu_l \bar nu_l + X.Comment: 22 p

    Towards LHC phenomenology at the loop level: A new method for one-loop amplitudes

    Full text link
    A precise understanding of LHC phenomenology requires the inclusion of one-loop corrections for multi-particle final states. In this talk we describe a semi-numerical method to compute one-loop amplitudes with many external particles and present first applications.Comment: 5 pages latex, 1 ps fig., 1 eps fig., Conference Proceedings Radcor 200

    Generalized parity transformations in the regularized Chern-Simons theory

    Get PDF
    We study renormalization effects in the Abelian Chern-Simons (CS) action. These effects can be non-trivial when the gauge field is coupled to dynamical matter, since the regularization of the UV divergences in the model forces the introduction of a parity even piece in the gauge field action. This changes the classical (odd) transformation properties of the pure CS action. This effect, already discussed for the case of a lattice regularization by F. Berruto, M.C. Diamantini and P. Sodano in hep-th/0004203, is also present when the theory is defined in the continuum and, indeed, it is a manifestation of a more general `anomalous' effect, since it happens for every regularization scheme. We explore the physical consequences of this anomaly. We also show that generalized, nonlocal parity transformations can be defined in such a way that the regularized theory is odd, and that those transformations tend to the usual ones when the cutoff is removed. These generalized transformations play a role that is tantamount to the deformed symmetry corresponding to Ginsparg-Wilson fermions [2] (in an even number of spacetime dimensions).Comment: 16 pages, LaTeX, references added and typos correcte

    Properties of 125 GeV Higgs boson in non-decoupling MSSM scenarios

    Full text link
    Tantalizing hints of the Higgs boson of mass around 125 GeV have been reported at the LHC. We explore the MSSM parameter space in which the 125 GeV state is identified as the heavier of the CP even Higgs bosons, and study two scenarios where the two photon production rate can be significantly larger than the standard model (SM). In one scenario, Γ(H→γγ)\Gamma(H\to \gamma\gamma) is enhanced by a light stau contribution, while the WW∗WW^{\ast} (ZZ∗ZZ^{\ast}) rate stays around the SM rate. In the other scenario, Γ(H→bbˉ)\Gamma(H\to b\bar{b}) is suppressed and not only the γγ\gamma\gamma but also the WW∗WW^{\ast} (ZZ∗ZZ^{\ast}) rates should be enhanced. The ττˉ\tau\bar{\tau} rate can be significantly larger or smaller than the SM rate in both scenarios. Other common features of the scenarios include top quark decays into charged Higgs boson, single and pair production of all Higgs bosons in e+e−e^+e^- collisions at s≲300\sqrt{s}\lesssim 300 GeV.Comment: 20 pages, 5 figures, accepted version for publication in JHE
    • …
    corecore